
1

1. Executive Summary
A leading FTSE 100 insurance company (Insurer) with tens of thousands of employees. They
provide a range of insurance products, including general insurance, health insurance, life insurance
and asset management, as well as retirement and savings solutions.

A major aspect of the Insurer’s operations is fulfilling claims. For operational and financial
efficiency, regulatory reporting, and to avoid fraudulent claims, each step of the claims process
must be validated and approved. As one of the steps in completing the claims process, The Insurer
fulfills claims from policy-holders by covering the cost of a replacement item or repair from one of
a large group of suppliers. Managing suppliers is a key part of successful operations for this Insurer,
and the supplier management market is worth almost $29 billion worldwide .1

The Supplier Claims Order Fulfillment process has these steps: i) Policy holder notifies the Insurer
of an incident, ii) The Insurer acknowledges claim and verifies claimant policy, iii) The Insurer’s
Claims Handling team sends claimant list of suppliers, iv) Claimant goes to a supplier, v) Supplier
provides an assessment to the Insurer, vi) The Insurer’s Supplier Assessment team requests
clarifications, supplier responds, vii) The Insurer’s Supplier Management team approves work, viii)
Supplier’s Finance team sends an invoice to the Insurer on completion, ix) The Insurer’s Supplier
Management team validate invoice, x) The Insurer’s Payment team make payment to supplier &
claim is closed.

The Insurer operates the Supplier Claims Order Fulfillment process, as part of the claims value
chain. This process operates across 6 teams & 12 software systems. To operate the process
end-to-end, each function performs the same cycle of steps i) send data & info to the System, ii)
receive response from System, iii) compute & validate response, iv) share & store execution of
step, v) evaluate & initiate next step. For reliable operations, all teams & systems involved should
operate the same end-to-end Process. They often don’t! This leads to operational & technical
challenges, which make process operations unreliable. The opportunity is providing a platform to
reliably operate the end-to-end process, across all teams & systems involved.

1https://www.marketsandmarkets.com/Market-Reports/supply-chain-management-market-190997554.html

2

Traditional solutions to end-to-end process operations are unreliable & expensive. Enterprise
Operations are generally function-first, they continue to improve functions & systems. Processes
are considered secondary. The thinking is that if we have great functions & systems, the business
can operate any process! Luther's platform is designed process-first, & primarily focuses on
end-to-end processes. Reliable end-to-end process operations include consistent operation, and
great functions & systems. Traditionally enterprises use bespoke connectors & local operations
scripts for process operations, which are fragmented, siloed, and change separately, and so are
ineffective for reliable process operations.

To remedy this, enterprises use automation tools. However they are ineffective at end-to-end
process operations, due to their limited scope and scale, and stitching them together also doesn’t
solve the problem.

Project Ford is a product built on the Luther platform using Deep Process Automation Technology
to automate the process of claims fulfillment with suppliers. It processes the fulfillment of a claim
from initiation to completion. The Luther Platform provides standard connectivity and a Common
Operations Script shared by all participants. The platform reliably operates the end-to-end
process across all teams and software systems from the common operations script.

Luther’s unique value for reliable end-to-end Process Operations is providing i) standard
connectivity & ii) a common operations script, across all teams & software systems. Luther’s
platform vertically integrates i) distributed system technology ii) optimal resource allocation &
management, iii) real time event ordering & streaming, iv) deterministic event processing &
execution, for reliable end-to-end process operations. Luther’s platform does this by i) connecting
systems to standard platform nodes, rather than to each other, and ii) teams & systems can
change the common operations script but all teams & systems have to know & agree to the
change, so all teams & systems involved operate the same end-to-end Process all the time!

3

Fig 1. Project Ford Overview
To implement the platform, i) Luther’s team mapped the Process, ii) Identified teams & software
systems in the process, iii) allocated nodes (servers) to teams, iv) connected nodes to systems, v)
set up the Platform on the nodes. vi) The Insurer’s team along with Luther’s team developed the
Common Operations Script (code) for Process Operations, vii) the process went Live.

Fig 2. Implementation details and timeline of Project Ford.

The results have been highly impactful. Thanks to increases in efficiency and the elimination of
manual intervention, a process that traditionally took over a month can now be completed in a
matter of days and operational costs have been reduced by 70%. Beyond the commercial results,
this led to operational benefits in production, i) reliable operations across the process & over time,
ii) Execution visibility, iii) reduction of reconciliation, iv) 5X smaller Ops teams, v) enforced
compliance checks. Also, technical benefits during development, i) automated infrastructure.,
connectors and development environment setup, ii) focus only on development of process
operations rather than technical setup and infrastructure, iii) consistent real time updates, iv)
eliminate DevOps teams, v) 5X smaller Dev teams.

Fig 3. Estimated results of implementing the Platform for the Supplier Claims Order Fulfillment Process

Project Ford demonstrates a sleek, effective system built on the Luther platform to standardize
and automate the supplier claims order fulfillment process. The network could be further
expanded to encompass other suppliers, but the Luther platform could also be utilized to further
streamline other areas of the leading Insurer’s operations.

4

2. The Process
2.1. Process Operations
Different teams have different operations, rules and
governance and they also utilize and operate a variety
of software systems in different ways. Each system
operates a specific function for the process. To operate
the process end to end, each function performs the
same cycle of steps: i) send data & information to the
System, ii) receive response from the System, iii)
compute & validate response, iv) share & store
execution of step, v) evaluate & initiate next steps.

Fig 4. These are the requirements that repeat for all functions across the end-to-end Process Operations.

Enterprises operate a set of specific functions based on their objective. For example, an insurance
company's functions help it to provide insurance. While the functions and systems may change,
the process remains the same. However, expecting processes to be efficient because of efficient
individual tools simply does not work for enterprises. Luther empowers enterprises with a
process-first approach.

5

To understand why efficient functions and tools do not create an efficient process, it is important
to understand the following. Tasks are simple events that are localized to one team involving one
or two software systems, for example retrieving data from a database. Workflows are more
complex, involving 10-20 tasks between one or two teams and two or three software systems. An
example of a workflow would be onboarding a new employee. Processes are complex, involving
50+ tasks, 3 or more teams and multiple software systems. Managing order fulfillment for
customer claims from start to finish is a process.

Fig 5. Different tools are used to automate different levels of complexity.

Generally, enterprise operations are function-driven i.e. enhancing the performance of individual
functions (tasks and workflows). Tasks often have dedicated software systems and are operated
by specific teams. By building and maintaining efficient and effective systems, almost any
function can be efficiently operated. As a result, tasks are highly efficient. However, large
enterprises operate thousands of processes each day, and each process is made up of many tasks.
Enterprises generally have similar core processes, with some variation on the details. For example,
every insurance company has the core processes of underwriting risk, collecting premiums and
paying out claims.

Enterprises continue to optimize and improve, and
incorporate better functions and systems. Example
functions include claims handling, claims assessment,
customer onboarding, finance, payments, settlement,
fraud, compliance, reconciliation. Example software
systems include databases, CRMs, RPA, Workflow tools,
cloud services, microservices, data lakes, and others.

Enterprises naturally gravitate to a “function-first” view where processes are secondary to these
functions and systems, as they are considered ever changing, and functions and systems can
enable any process that the business may envision. The problem is, functions do not necessarily
create an efficient process. Process-first thinking is required for this, and since the processes in
many industries are regulated and unchanging, process-first thinking makes more sense.

6

Luther's platform is designed process-first. For efficient enterprise operations, effective
end-to-end process operations are as important as effective individual services and systems, and
the Luther platform is designed especially for operating explicitly enumerated end-to-end
process operations while still accounting for functions.

2.2. Supplier Claims Order Fulfillment in Context
Value streams are collections of processes organized by enterprises that operate specific
enterprise objectives. In an insurance context, one example of a value stream could be all
processes involved with “claims” . Together, these can involve hundreds or thousands of tasks,2

many teams, and many software systems. Efficiently operating value streams can take up all
operations of an enterprise.

Fig 6. Claims is a value stream. It contains many processes, including supplier management

Supplier order fulfillment is a crucial activity of medium-to-large enterprises that work with
multiple suppliers to deliver products to customers. Its primary goal is to ensure that a company’s
supply chain for its customers is efficient, cost-effective, and capable of meeting its operational
needs. Globally, products and systems that aid in supplier order fulfillment are worth almost $29
billion, and this market is expected to grow by 11% each year . An effective supplier claims order3

fulfillment process is critical to ensure smooth operations. Fast completion times on invoice
processing ensures that both suppliers and customers are satisfied and help to avoid compliance
violations. This process is carried out at immense scale by the largest insurance companies, who
use multiple specialist suppliers providing different categories of product.

3 1. https://www.marketsandmarkets.com/Market-Reports/supply-chain-management-market-190997554.html
2 https://www.insurancethoughtleadership.com/claims/rethinking-claims-value-chain

7

The multinational Insurer has many suppliers that provide replacement items to customers who
have filed claims. The Insurer processes over 400,000 supplier invoices a year relating to
household claims. Approximately 20% are put on hold as a result of existing validation processes.
The average time for a supplier invoice to be settled is over 30 days. As the world becomes
increasingly digitized, companies look to streamline their operations with efficient digital
processes to automate administrative tasks. Currently, much of the Insurer’s supplier claims order
fulfillment process does operate digitally. However, owing to the large number of participants
involved and the need for consistent operations across the participants involved, current
automation solutions have been unable to effectively automate the operations of this process.

Despite this scale, the process is unstandardized and its operations are fragmented across
different participants. To ensure consistent operations, compliance with regulations, avoidance of
errors in fulfillments and payments, and prevention of fraud, claims, orders, invoices, and
payments must be processed, validated, and approved by different teams. Each team performs a
specific function within the end-to-end process.

2.3. Supplier Claims Order Fulfillment Process before

Let’s first discuss the process of processing a claim and the participants involved.
1. The policy holder notifies the insurer of an incident that may result in a claim
2. The insurer acknowledges the claim and verifies the claimant has a valid policy with them
3. The insurer’s Claims Handling team provides claimant with list of relevant suppliers
4. The claimant goes to a supplier
5. The supplier provides an assessment to the insurer’s Claims Handling team
6. The insurer’s Supplier Assessment team respond requesting clarifications,
7. The insurer’s Supplier Mgmt team approves work & makes adjustments as they arise
8. The supplier’s Finance team sends an invoice to the insurer once the work is completed
9. The insurer’s Supplier Management team process and validate the invoice
10. The insurer’s Payment team make the payment to supplier & the claim is marked as closed

Fig 7. Illustrates the process of processing supplier claims and the participants and systems involved.

8

3. Problem
3.1. Problem Overview

Enterprises face operational problems due to the complexity of their processes. Processes are
operated across teams and systems resulting in disjointed and inefficient operations. Also,
operations are non-standardized and inflexible leading to high costs, errors, and delays.

The Insurer's supplier order fulfillment process operates across separate large teams and software
systems, making it expensive, inefficient and error-prone due to the need for manual intervention.
This leads to operational problems such as duplicated requests due to slow time-scales, decreased
customer satisfaction, and poor regulatory compliance.

3.2. Enterprise Process Operations Problems
Enterprises are complex organizations operating many processes. Enterprises operate Processes
across fragmented and siloed teams and software systems resulting in disjointed, inconsistent
and inefficient end to end operations, leading to high costs, delays and errors. Specifically,
operating processes across fragmented and siloed teams and software systems affect process
operations both technically during the development phase & operationally once they go live in
production.

9

Due to different infrastructure between
participants and non-standard developer
environments, large developer teams must be
used to develop many bespoke pieces of
software. These applications must then be
strung together, requiring more developers,
time and resources. The use of multiple
development pipelines and environments leads
to inconsistent and bloated code.

Once the solution is live, the fragmented and separated systems require large teams to be able to
operate each participant separately.

Nonstandard operations across the process
lead to prolonged timescales which can lead to
compliance violations. The separated systems
involved in process operations continue to
require dedicated development teams as they
all require separate updates, which are often
out of sync, further hindering the process.

3.3. Supplier Claims Order Fulfillment Process Operations Problems
The Insurer’s supplier claims order fulfillment process operates across several teams: Claims
Handling team, Supplier Management team, Finance team and Payments team, and involves
multiple software systems. These teams and systems are siloed and operate separately, and
consequently the Insurer must employ large teams to ensure reliable operations. One of these
large teams is Supplier Management. Assessments from suppliers, and clarifications, are received
in different formats, and the Supplier Management team processes this information through the
Supplier Portal and Email systems. Another large team is Claims Handling. The policies of
claimants must be assessed to ensure they are valid against the policy database, and appropriate
suppliers must be chosen to match the replacement or repair the claimant requires. Large teams
incur high costs, and the large amount of manual intervention makes the process error-prone.
Communication between large numbers of individuals and teams makes the process disjointed
and inefficient. Additionally, clarification and approval between participants in the process take
place in multiple formats, causing long delays. The large number of suppliers and product codes
mean payments are often attempted but rejected as employees cannot find the correct code.
Existing validation protocols leave room for error. Frustrated by slow payment timescales,
suppliers frequently resubmit the payment request, resulting in duplicate payments and
additional delays determining. This can lead to penalties and fines for the Insurer. Ultimately,
inefficiencies resulting from the manual inputs in the current system increase wait times for claim
completion, reducing customer and supplier satisfaction and increasing operational costs.

10

4. Traditional approaches to process operations and
automation solutions don't work
4.1. Approach to Process Operations today
To set up a process, operations enterprises generally tend to utilize multiple large teams to set up
and maintain bespoke, individual systems with associated software, and then write bespoke
software (connectors) to connect and coordinate these systems. Because these systems are
independent, they require independent maintenance and updates. Another consequence of
independent systems is inconsistent operations. The operations script is fragmented across
systems and participants because of a lack of end-to-end participant connectivity, resulting in
inconsistent and non-transparent processes. Repeated setup, development and maintenance
cycles require a considerable amount of resources on behalf of the enterprise, reflected directly in
the large budgets required to set up, operate and maintain processes across the entire enterprise.
Specifically, enterprises must mobilize large development teams to set up the infrastructure,
connectors and developer environments needed to connect fragmented operations. Then large
operations teams must be mobilized to maintain these systems. Now, developers must write
execution software that will carry out the process on the system, and then software must be
written to connect all these systems & to keep them coordinated. Once the process is operational,
developer & support teams need to maintain these systems with bespoke updates & fixes.

11

Fig 8. Enterprises must carry out all of the above to run a process in the modern marketplace.

4.2. Bespoke Connectors & Operations Scripts & why they don't work
Bespoke local connections remove coordination and coupling problems across team boundaries.
However, no individual has a coherent view of the end-to-end process and implementers of
individual services must coordinate their own execution logic. Because of this, each individual
service must be maintained and updated separately, leading to delays and disconnects in the
process, as well as higher operational costs.

Fig 9. Bespoke local connections across the end-to-end process that are internally developed by the enterprise.

4.3. Local Automation (RPA, Workflow) tools & why stitching them together
doesn’t work
Processes in an enterprise are a series of operations (tasks) that are generally followed in a specific
order based on outcomes of the previous operations (tasks). Each process consists of a collection
of Workflows (10-20 tasks), each of which is a collection of Tasks.

12

Fig 10. Today, there are no traditional tools which effectively automate processes.
To overcome the traditional approach, enterprises attempt to stitch together software systems,
RPA tools and workflow tools across the process. Process orchestration approaches stitch together
combinations of RPA and workflow systems through point-to-point message passing techniques.
The service implements a batch scheduler or workflow system. This is effective at coordinating
tasks within a single team, but is inadequate for the operations of processes spanning multiple
teams. Individual teams create bespoke code for their tasks, resulting in “script bloat” - the
proliferation of numerous, redundant, poorly documented scripts that complicate maintenance
and scalability. There is a lack of transparency between participants and this lack of coordination
and integration results in process inefficiencies and errors, which results in delays and operational
friction.

Fig 11. Stitching together local automation tools through local RPA and workflow tools.
For a full explanation of traditional process operations and Luther’s solution, request access to the
"Deep Process Automation Primer"

13

https://docs.google.com/document/d/103KIQUDuwMV0e5CzjNFMYoYnq7g_7AoU_qIHLOza_Tw/edit#heading=h.ynhrtd9cd21

5. Solution
5.1. Solution Overview
Luther’s platform was used by the Insurer’s development team to build a world-class supplier
order and claims order fulfillment process. This required an automated system that could handle
the complexity of a process involving many internal teams and external inputs with progressive
validation steps. The platform provides:

● standard connectivity across all software systems
● a common operations script that contains the end-to-end process operations

The Luther platform ensures all participants operate through a standardized set of processes
operated on and validated by the platform, without interruption and with no loss of data.

14

Fig 12. Overview of the Luther Platform automating the claims fulfillment process.

This is very difficult and costly with traditional automation tools and workflows. Luther’s Deep
Automation Platform allowed the automation of the process of claims fulfillment filing. Project
Ford is the result of this work and is an end-to-end claims fulfillment system that standardizes the
process with minimal manual intervention while reducing claim fulfillment times and operational
costs.

5.2. Demo
Please find the "Ford Solution Demo" here. Access is available on request.

5.3. How it works on the Luther Platform
The Supplier Claims Order Fulfillment Process:

● A claimant comes to the insurer requesting a repair or replacement item
● Platform acknowledges request & verifies validity of policy for claim & claimant
● The insurer provides the claimant with a list of approved suppliers
● Supplier provides an assessment of damages to the platform
● The insurer responds requesting clarifications, and the supplier responds
● The insurer approves work starting
● Supplier informs the insurer of progress/adjustments to the work via a supplier portal,
● The insurer approves progress/adjustments
● Work is completed and supplier sends invoice to Invoice Portal onto the Luther Platform
● The invoice is processed and validated using the common operations script
● The payment is made to the supplier automatically once the invoice is validated
● The claim is marked as completed and closed

For a more detailed view of one of the steps operating the Luther Platform, please view the
appendix.

15

https://drive.google.com/file/d/11QXS8ye_N3qOwavkeUdoEnYQT6Oobiby/view?usp=drive_link

6. Implementation
The Luther platform ensures all participants operate through a standardized set of steps executed
on and validated by the platform. An itemized timeline (Fig 13) was created to implement Project
Ford with the Insurer. Request access to an example of a more detailed timeline here: "Luther Get
Started Questionnaire".

First, Luther’s team identified all teams and all software systems involved in the operations of the
process. Luther’s team worked with the teams at the Insurer to map the process into a series of
objective steps. View a process map at Platform: How it works - Luther Systems.

Then Luther’s team allocated a node to each participant, deployed the platform on all nodes, and
connected the nodes to each of the software systems. Then the Luther team worked with
developers to create a robust common operations script for process operations. Request access to
the "Ford Demo Video" here.

For a full explanation of the implementation process, view the Full Luther Platform Setup.

For a walkthrough of the implementation process, view the Luther Systems Sandbox Setup.

16

https://docs.google.com/spreadsheets/d/1jHSeFRhaWVkUiEtQ_crxGoyGFJ82eGUZ3rxhnYi4cro/edit?gid=1722375828#gid=1722375828
https://docs.google.com/spreadsheets/d/1jHSeFRhaWVkUiEtQ_crxGoyGFJ82eGUZ3rxhnYi4cro/edit?gid=1722375828#gid=1722375828
https://www.luthersystems.com/platform/platform-overview
https://drive.google.com/file/d/11QXS8ye_N3qOwavkeUdoEnYQT6Oobiby/view?usp=drive_link
https://app.platform.luthersystemsapp.com/
https://app.platform.luthersystemsapp.com/sandboxSetup

Fig 13. Implementation timeline for Project Ford.

6.1. Process mapping
Luther’s team worked with multiple Insurer team members to map the process operations, which
can be hosted on the Luther Platform. The process map includes functions, data inputs and
outputs at each step, and rules and decisions at each step. Participants are operationally separate
teams or entities involved in the process. As part of process mapping, the Luther team identified
the exact set of software systems, participants/teams involved in operating the end-to-end
process.

Fig 14. Luther’s team worked with the insurer and mapped the process into a series of objective, standardized steps
associated with 6 participants.

6.2. Identify software systems
Luther's team identified the software systems involved in end-to-end process operations. These
systems are: Supplier Database (Postgres), Policy Database (Oracle), Supplier Portal (REST/JSON
Gateway), Email (SMTP), Invoice Portal (SOAP/XML Gateway), Invoice Generator (Salesforce,
OpenKoda), Invoice Validation Rules (Camunda Workflow), and Payment Gateway (GoCardless
Payment Gateway API).

Fig 15. Luther’s team identified the software systems involved in the end-to-end process operations.

6.3. Nodes and Connectivity through distributed system for end-to-end
participant connectivity
Luther's team assigned a dedicated node to each participant involved in the process by allocating
servers to their respective teams.

17

These servers are cloud-native and can be deployed on either public or private clouds, depending
on security requirements. All nodes are interconnected through a distributed system, which
facilitates the sharing and validation of operational functions and data among all participants.

Fig 16. Nodes are connected via a distributed system on the Luther Platform.

6.4. Connectors to software systems
Each participant/team has a number of software systems involved in its operations, as identified
in the process map. For each participant/team, Luther’s platform connects its node to all software
systems involved in its operations. Luther has a set of standard connectors across a wide range of
enterprise systems, which the Luther platform deploys to rapidly connect to a majority of systems
in an enterprise. This is done by determining the technology, type and system of the connector to
connect to each system in the process.

Fig 17. Luther’s team set up connectors that link the processes together.

For a full list of our connectors, please visit: "Luther Platform Connectors".

6.5. Platform set-up
Luther's team deployed the platform on all nodes.

The Insurer team selected a set of configurations for their platform specifications. This selection
depends on the process complexity (number of tasks), amount of data processed (KB), number of
participants, reliability, availability and security requirements. For a closer look at the platform
configuration specs please visit our website here: "Luther Platform Connectors".

18

https://app.platform.luthersystemsapp.com/connectors
https://app.platform.luthersystemsapp.com/connectors

Luther’s platform vertically integrates distributed system technology, optimal resource allocation
and management, real-time event ordering and streaming (sharing), and deterministic event
processing and execution, to provide a modern technology stack to reliably operate an
end-to-end process across multiple software systems, at scale.

Fig 18. The platform is set up on each of the nodes, and a common operations script links independent systems into
one cohesive process.

6.6. Common Operations Script for process operations
The platform is now fully set up and integrated with all systems
involved in the operation. The Insurer’s development team, in
collaboration with Luther, developed the Common Operations
Script to manage the end-to-end process. Connectors translate
data from local systems into a common data model utilized by the
Common Operations Script. This script encapsulates the business
logic, data, rules, and validations for each process step.

The Common Operations Script effectively encodes and operates
the process map, executing the following steps across the entire
process.

Fig 19. These are the requirements that repeat for all functions across the end-to-end Process Operations.

This script is shared by all participants and operates on the Luther Platform. Each participant can
change the script through suggesting changes, once the changes to the script are approved by all
participants the script is updated for all participants. This gives the enterprise full autonomy over
the process operations to modify and change, it also ensures all participants are operating “the
same process” at all times. When a team changes their operations, the operations for all
participants are updated simultaneously.

19

Fig 20. Luther and the insurer developer teams work together to write the common operations script, converting
tasks into an objective workflow that links every step in the process.

For more information about Luther’s platform please consult this video: "Luther Platform Setup".

For a demo of the build process please visit our website: "Luther Build Process Demo".

6.7. Go live (production)
Once the platform is set up and the Common Operations Script has been written, the product is
ready to go live. Once live, it automates the claims order fulfillment process by providing
end-to-end connectivity between participants, and it receives across the board updates when
needed instead of siloed, separate updates to individual software systems. The process is
optimally coordinated, scalable, and resilient to change. Furthermore, the process has less
downtime, and requires minimal manual intervention.

20

https://www.youtube.com/watch?v=78H5m1aZZoU
https://app.platform-test.luthersystemsapp.com/build

7. Results
7.1. Commercial results
Using Luther’s Deep Process Automation platform, the implementation of Project Ford was able
to reduce the cost of the claims order fulfillment process by 70%. This is primarily due to FTE
savings in both ops teams involved in process operations as well ops teams involved in
reprocessing supplier orders. The percentage of errors is estimated to be reduced to below 2%,
due to automating operations and identifying many errors in near real time. The average total
time for an invoice to be processed was reduced from 35 days to just 4 days, speeding up the
average processing time by 10X. This results in a return on investment of 600%.

21

7.2. Operational benefits
Luther delivered a product that standardizes the supplier claims order fulfillment process
operations, and demonstrated the potential for other suppliers to be integrated into the network,
while reducing inefficiencies, improving process transparency, reducing the size of operations
teams, and improving compliance, which could not have been achieved without Luther’s Deep
Automation Technology.

General operational advantages

The Luther Platform streamlines operations across enterprise processes, reducing process time
and cost while maintaining transparency and flexibility.

Fig 21. General results from implementation of the Luther platform

Specific operational advantages

Implementing Project Ford has streamlined the operations of the supplier order fulfillment
process, making it more efficient, faster, and standardized all while requiring minimal manual
intervention, and without sacrificing transparency or integrity of data. The platform is flexible and
scalable to future changes to the process or regulations.

Enhanced invoice processing:
● Provides visibility and transparency for most up-to-date order details to all participants
● Policies and orders can be automatically updated with zero downtime

Enhanced operations:
● Flexibility and scalability for policy changes in-built to the platform
● Elimination of manual intervention means smaller operational teams for the insurer
● Standardization of the order fulfillment process, ensuring faster timescales helping to

avoid compliance violations
● Increased system reliability and fewer processing errors reduce costs associated with

duplicate invoices

22

7.3. Technical benefits
General technical advantages

The Luther Platform ensures each step in the process is recorded and validated, and enforces
common process logic across the entire network, resulting in a standardized and consistent
process.

Fig 22. General technical results from implementation of the Luther platform.

Specific technical advantages

Improved operating efficiency:
● Automatically provides verified execution to increase system reliability and reduces

processing errors
● Common execution visibility to all participants reduces troubleshooting effort and quickly

identifies processing bottlenecks
● Automatically supports Common Operations Script updates including new validation rules

Reduced audit trail and reporting costs:
● Entire order and invoice history is securely maintained by the platform with timestamps

for every event

23

8. Expansion
This project demonstrates a sleek, effective system built on the Luther platform to standardize
and automate the supplier claims order fulfillment process. The network could be further
expanded to encompass other suppliers, but the Luther platform could also be utilized to further
streamline other areas of the Insurer’s operations by increasing the scope of the network, resulting
in further reductions to costs and inefficiencies.

Potential areas of expansion to further integrate the Insurer’s operations into a single platform
include:

● Expanding the invoice management network to include other suppliers
● Using the Luther platform to implement new technologies to allow customers to purchase

insurance policies and open financial accounts more quickly, improving customer
satisfaction

● Automated compliance protocols to protect the Insurer from breaches of regulations
resulting in fewer penalties and fines

● Expanding the network to encompass other aspects of the Insurer’s operations such as
financial settlements

24

9. Luther Company & Offerings
9.1. What Luther does

Fig 23. Luther’s offerings solve the complicated problem of enterprise process operations.

For more information about Luther, please visit luthersystems.com.

25

https://www.luthersystems.com/about-us

9.2. “In a nutshell” - Luther’s unique value

9.3. Platform implementation
To implement the Luther Platform, organizations work with Luther through an implementation
process - laying out objectives and expectations for the project, then mapping the process, setting
up the infrastructure, and enterprise developers coding the process.

Fig 24. Implementation timeline for an application operated on the Luther Platform..

Enterprises working with Luther fill in the details of all software systems and connectors for their
processes. These documents are used to build the process map and subsequently, the application.

26

Fig 25. The list of software systems for Project Ford, similar to one an enterprise building an application on the
Luther Platform would fill out.

Fig 26. A sample list of connectors and infrastructure, similar to one an enterprise building an application on the
Luther Platform would fill out.

9.4. Results of the Luther platform for Process Operations Automation
At Luther, we recognize that enterprise processes of
today are complex and challenging to automate. We
provide a platform for successful process
automation.

The results are incredible. Enterprises working with
Luther see an average of 10 times their investment.
Time is saved everywhere, with development of
process applications and automation technology
sped up by 2.5 times, and processing times 7 times
faster.

Find more information about Luther’s Platform Core Features here.

27

https://app.platform-test.luthersystemsapp.com/features

9.5. Luther’s platform architecture

For a more detailed introduction on the Luther platform please request access to the "Luther Deep
Process Automation Primer".

For a detailed introduction and documentation examples please see the Luther Platform site.

For more information about Luther’s platform please visit luthersystems.com.

28

https://docs.google.com/document/u/1/d/103KIQUDuwMV0e5CzjNFMYoYnq7g_7AoU_qIHLOza_Tw/edit
https://docs.google.com/document/u/1/d/103KIQUDuwMV0e5CzjNFMYoYnq7g_7AoU_qIHLOza_Tw/edit
https://www.luthersystems.com/platform/platform-overview
https://www.luthersystems.com

10. Appendix
10.1 How the platform operates an end-to-end process: Application walkthrough
Below is a more detailed walkthrough of the process operations, across the teams and software
systems. Each step in the process follows the exact same 5 operational steps which the Platform
executes

Step 1: Insurer Claims Handling team executes Verify Claimant Policy (retrieve Policy information)
I. Platform sends (request) policy ID to Policy Database [Oracle]
II. Platform receives (response) policy Information from Policy Database
III. Platform validates policy information based a set of predetermined rules in the Common

Operations Script
IV. Platform shares & stores claimant Policy from Policy Database
V. Platform evaluates & initiates next step

Step 2: Insurer Claims Handling team executes Verify Claimant Policy (retrieve Supplier
information)

I. Platform sends (request) claims ID to Supplier Database [PostgreSQL DB]
II. Platform receives (response) supplier information from Supplier Database
III. Platform validates supplier information based a set of predetermined rules in the

Common Operations Script
IV. Platform shares and stores supplier information from Supplier Database
V. Platform evaluates & initiates next step

29

Step 3: Insurer Claims Handling Team executes Verify Claimant Policy (send information about
relevant suppliers to the claimant)

I. Platform sends (request) supplier information to Email [SMTP]
II. Platform receives (response) email confirmation from Email
III. Platform validates email confirmation based a set of predetermined rules in the Common

Operations Script
IV. Platform shares and stores email confirmation from Email
V. Platform evaluates & initiates next step

Step 4: Supplier Assessment Team executes Make adjustments with Insurer (send assessment to
insurer)

I. Platform sends (request) supplier assessment information via Supplier UI Portal
[REST/JSON Gateway] to Supplier Team: Assessment

II. Platform receives (response) supplier assessment information via Supplier UI Portal from
Supplier Team: Assessment

III. Platform validates supplier assessment information based on a predetermined rules in the
Common Operations Script

IV. Platform shares and stores verification of assessment from Supplier UI Portal
V. Platform evaluates & Initiate next step

30

The steps operate in a similar manner until the final step is reached:

Step 12: Insurer Payments Team executes Make Payment (make payment to supplier)
I. Platform sends (request) payment information to Payment Gateway [GoCardless API]
II. Platform receives (response) payment information from Payment Gateway
III. Platform validates payment information based on a predetermined set of rules in the

Common Operations Script
IV. Platform shares and stores payment information from Payment Gateway
V. Platform evaluates & Initiate next step

The Platform completes the process:

31

10.2. Definitions

32

